Indian Statistical Institute First Semester Back Paper Examination 2004-2005 B.Math (Hons.) I Year Analysis I

Time: 3 hrs

Maximum Marks: 100

- 1. Let $f: (0,1) \to \mathbb{R}$ be a continuous function such that $\lim_{x \to 0+} f(X) = 0$ and $\lim_{x \to 1-} f(x) = 1$. Show that $\exists x_0 \in (0,1)$ such that $f(x_0) = \frac{\sqrt{3}}{2}$ [15]
- 2. Let $g : [0,1] \to \mathbb{R}$ be a continuous function. Suppose that for each $x \in [0,1], \exists y \in [0,1]$ such that

$$|g(y)| \le |g(x)|$$

Show that $\exists x_0 \in [0, 1]$ such that $g(x_0) = 0.$ [15]

- 3. Let $f : [a, b] \to I\!\!R$ be a continuous function and let $\alpha : [a, b] \to I\!\!R$ be an increasing function. Show that f is Riemann-Stierltjis integrable with respect to α . [20]
- 4. Let $g: \mathbb{R} \to \mathbb{R}$ be a non-zero function satisfying

$$g(x+y) = g(x)g(y) \quad \forall x, y \in \mathbb{R}$$

. Show that if g is continuous at 0 it is continuous everywhere. Further show that if g is continuous then $g(x) = b^x$ for some $b \in \mathbb{R}$. [20]

- 5. Show that countable union of countable sets is countable. [10]
- 6. A, B be non-empty subsets of \mathbb{R} which are bounded above. Take $S = \{a \in b : a \in A, b \in B\}$ Then show that $\sup(S) = \sup(A) + \sup(B)$. [10]
- 7. Let $h : \mathbb{R} \to \mathbb{R}$ be a function satisfies

$$|h(x) - h(y)| \le R(x - y)^2$$

for some $R \in \mathbb{R}$. Then show that h must be a constant function. [10]